Tuesday, 27 December 2011
Unspinning Fish Farm Spin - Dec 27, 2011
Read this article: http://salmonfarmscience.com/2011/12/19/its-a-small-science-world/.
Now unspinning:
1. The Cohen Commission did not live stream the last three days of testimony (and there was precious little live streaming earlier) because they used a bigger hall where they felt all the audience could get in and hear it.
2. It is not true that not live streaming means only media reports will get out and be negative to fish farms. The day's transcripts are available to media right away and to the public in another week.
3. Kibenge put out an article in 2001 saying that farmed coho were lethally wiped out while Atlantics nearby, in Chile, suffered no damage: http://www.ncbi.nlm.nih.gov/pubmed/11411649, shows how deadly it can be for coho, even when Atlantic salmon are not affected.
4. Are Nylund, along with Kibenge and Miller said it is likely that Norwegian ISA is in BC. Nylund took Miller to task, but later it was shown that she has the best and fastest equipment for testing for ISA in farmed fish.
5. Miller's results will confirm ISA in BC, however, the OIE manual, Table 5, gives what is considered confirmed and presumptive positive. She also pointed out that farmed chinook in Clayoquot Sound have ISA and 25% have it. In an average farm this means more than 100,000 sick farmed fish.
6. Yes, Winton could well be involved in an international, arms-length, with no fish farm conflict of interest testing, but work on ISA has been going by the recognized OIE labs for well over a decade. And his work was before Miller found a huge number of farmed chinook in Clayoquot Sound with ISA.
7. As for the suggestion that ISA may be a Pacific disease contradicts the overwhelming amount of science that says there were only two strains of ISA, both from the Atlantic Ocean until the Norwegian fish farms developed the infectious strain and it broke out all around the world where fish farms have set up. See this Kibenge paper: http://fishfarmnews.blogspot.com/2011/10/isa-infections-world-wide-sine-1984.html. Now there are 28 strains of ISA in Chile alone - this is Cermaq/Mainstream's own research.
8. It is silly to state that Miller is not an ISA virus expert. She has found more cases than anyone else, and this includes the DFO Moncton lab who can't seem to find ISA, because they are not an expert lab, like Nylund, Kibenge and Miller. All three said it was not up to international standards.
Fish farms should be on land.
Saturday, 17 December 2011
Key Document - PCR Testing by BC Government and CFIA - Dec 17, 2011
A Critique on Infectious Salmon Anemia Virus Detection Capabilities of the Canadian Fish Health Protection Regulations
S.A. Goldes, MSc.
2011
Introduction
Atlantic salmon eyed eggs have been imported almost yearly into British Columbia during the period 1985 until 2010 from a number of countries including the USA, UK , Iceland and also from Atlantic Canada (BC Atlantic Imports). Source aquaculture facilities, except for more recent imports from Iceland (where the definition of lot was not achieved, however the rest of the procedures were the same) were certified free of specified piscine pathogens of concern according to testing protocols mandated in the Canadian Fish Health Protection Regulations (CFHPR). Immediately prior to shipment, eyed eggs were disinfected according to the CFHPR iodophor disinfection protocol. Certification and iodine egg disinfection together are the main pillar’s of Canada’s defense against the introduction of exotic piscine diseases such as Infectious Salmon Anemia (ISA). In order to protect British Columbia’s wild aquatic ecosystems and aquaculture industries these measures must provide a high level of security. Close scientific examination of these regulatory measures however raises concerns that in-practice, these measures fail to provide the high level of protection required. This discussion focuses on certain concerns with: (1) ISA detection using cell culture, (2) sample size, and (3) iodine surface disinfection, however there remain many other weaknesses.
(1) Infectious Salmon Anemia Virus Detection Using Cell Culture
Infectious salmon anemia was first reported in Norway in 1984 (Plarre et al., 2005), coincidentally one year prior to the first importation of Atlantic salmon eyed eggs into BC from Scotland in 1985. Atlantic salmon eyed eggs were imported into BC almost yearly from the UK from 1985 to 1993, despite the fact that Norwegian ISAV epizootics were ongoing and also with the knowledge that detecting ISAV by cell culture was not possible (Mjaaland et al., 1997). Thus during the early years of Atlantic salmon imports (1985 to 1995) the Canadian government understood that the CFHPR protocols were incapable of detecting ISAV. At that time it was naively thought that ISA was limited to Norway alone and that Scotland was sufficiently distant. Later this assumption was proven erroneous, because shortly after ISAV cell culture became possible in 1995 (Dannevig et al., 1995a; Dannevig et al., 1995b), ISAV was detected in: New Brunswick in 1997 (Mullins et al., 1998), Scotland in 1998 (Rodger et al., 1998) and Maine, USA in 2001 (Bouchard et al., 2001), as well as in several other countries. It is also worth mentioning, that despite the devastation ISA has caused aquaculture elsewhere, ISA is still not listed in the current CFHPR as a pathogen of concern.
The CFHPR specifies that the initial testing for viral pathogens of concern is to be done using cell culture. In this test diluted and filtered extracts of virus-infected tissue (or ovarian fluid) are placed on the surface of a single cell layer deep, carpet of fish cells in vitro. A laboratory worker visually inspects the fish cells (cell lines) for presence of abnormalities (referred to as cytopathic effect (CPE)) indicative of viral pathology over a period of 14-21 days. This visual analysis is very subjective, requires substantial experience and is likely to vary between individuals since there is no licensing or standardization of training requirements. Ultimately all virus detection depends on the knowledge of the virologist. Inexperience can lead to a high number of false negatives.
Although ISAV outbreaks started in 1984 in Norway, it wasn’t until eleven years later that the virus could be detected in cell culture. In 1995 Dannevig’s laboratory developed a cell line from Atlantic salmon head kidney tissue (SHK1) in which ISAV could be cultured and ISA-mediated CPE occurred (Dannevig et al., 1995a; Dannevig et al., 1995b). As previously mentioned, the use of SHK1 cells led to the detection of ISAV in many countries. Shortly thereafter it was found that ISAV could be detected in chinook salmon embryo (CHSE214) as well as several newly developed cell lines: Atlantic salmon (AS) and Atlantic salmon head kidney leukocytes (TO) (Bouchard et al., 1999; Kibenge et al., 2000; Nicholson et al., 1973; Wergeland et al., 2001). The CFHPR mandates that two of the following cell lines be used: rainbow trout gonad (RTG2), chinook salmon embryo (CHSE214), epithelioma papulosum cyprini (EPC) or fathead minnow (FHM). Of these cell lines, ISAV has only been cultured successfully in CHSE214 cells. Note that the CFHPR does not require the use of CHSE214 cells since other combinations of specified cell lines could technically suffice. In the case of Atlantic salmon imports I believe CHSE214 cells were used, however not all records are available. The use of SHK1 cells was also not mandated by the CFHPR during the certification of Atlantic salmon source facilities, despite the fact that in 1997 the Office International des Epizooties (OIE) Aquatic animal manual specified that SHK1 cells were the cell line of choice for detection of ISAV [in (Bouchard et al., 1999)]. SHK1 cells however do not always reliably detect ISAV. Twenty seven percent (27%) of isolates tested (Europe and Eastern Canada) did not grow in SHK1 cell lines (Mjaaland et al., 2002). In addition CPE can be slow to develop and visually difficult to detect in SHK1 cell lines (Falk et al., 1998). Thus even with the most sensitive cell line, false negatives are still a problem. Consequently, to detect ISAV by cell culture several cell lines (SHK1, TO, ASK, CHSE214) need to be used concurrently.
Atlantic saImon were tested using CHSE214 cells, however this cell line has its own issues with ISAV. First, not all genotypes of ISAV will grow in CHSE214 cell lines. Of thirteen ISAV isolates that caused CPE in SHK1 cells, only 53% also caused CPE in CHSE214 cell lines (Kibenge et al., 2000). Another study found that of eight ISAV genotypes tested (included Norway, Scotland and Eastern Canada) only one (Canadian genotype) caused CPE in CHSE214 cells (Munir et al., 2004). In a second study, SHK1 cell lines detected 30 positives, while CHSE214 cell lines detected only 13 (43%) (Merrill, 2003). In a two lab comparison using CHSE214 cell lines, one laboratory failed to detect any ISAV+ positives while the other lab found all samples to be positive (Rolland et al., 2005). In addition on CHSE214 cell lines, some ISAV isolates do not cause CPE when the cell lines are first inoculated with tissue filtrate. However when the cells and supernatant from the apparently negative cell culture wells were removed and re-inoculated onto fresh cell lines, CPE occurred and as many as three more re-inoculations were necessary to classify samples as negative (Kibenge et al., 2000). Re-inoculations, known as blind passes, are not required by the CFHPR, consequently samples with no initial CPE would be classified as negative. CPE also develops more slowly in CHSE214 as compared to AS and SHK1 cell lines. At 14 days post inoculation CPE was present in 93.8% of ISAV positive samples in SHK1 cells, but only 23% of ISAV positives samples using CHSE214 cell lines (Rolland et al., 2005). This means that if inoculated CHSE214 cell lines are only kept for 14 days and not blind-passed (as permitted under the CFHPR), there would be a high number of false positives.
(2) Sampling
The CFHPR specifies the number of fish to be tested at each step during facility certification. Sample numbers are calculated by referring to the output of an algorithm developed by Ossiander in 1973 (Ossiander et al., 1973). All sampling is done assuming that 5 percent of the fish in the population are at least carriers of the pathogen of concern. A carrier is any fish having more one or more ISA virus particles on board and who is otherwise healthy. Using the five percent prevalence assumption, Ossiander’s algorithm states that a sample of 60 fish should be taken from fish populations over 100,000 fish. This is essentially the same sampling table presented in the CFHPR (Table 1). Ossiander’s sampling algorithm assumes that the diagnostic test can detect a carrier, which in fact is erroneous. In addition the CFHPR’s assumption that five percent of the population are pathogen carriers needs to be revisited.
Implicit in the Ossiander algorithm is that the diagnostic test used to detect the pathogen is capable of detecting a carrier. First it is well known than no veterinary diagnostic test can achieve this extremely low level of sensitivity. Even the RTPCR test for ISAV may fail to detect carriers (Devold et al., 2000). For ISAV detection by cell culture the lower limit of sensitivity is unknown both in the research laboratory and in a diagnostic laboratory. We do however know that in-practice the ability of different laboratories to detect ISAV using cell lines varies greatly. When two laboratories were blind-tested for their ability to detect ISAV by cell culture, the sensitivity in one of the laboratories ranged from 0.92 to 0.96, while the other laboratory had a perfect sensitivity of 1.00 (Nerette et al., 2005). In another study, one laboratory failed to detect any ISAV in kidney tissue by cell culture (using SHK1 cell lines), whereas the other laboratory detected 25 ISAV positive fish in identical samples (Merrill, 2003). In a third study, again a two laboratory comparison, it was found that the mean sensitivity of cell culture for ISAV was only 67 percent (McClure et al., 2005). This data indicates that in some hands the sensitivity of ISAV detection using cell culture was very low. Consequently Ossiander’s assumption of perfect test sensitivity was not realistic. By extension, if the test sensitivity is not perfect, then the sample size must be increased. I am not an epidemiologist, however sample size calculations which factor in test sensitivity have been developed (Humphry et al., 2004). With current knowledge, the use of Ossiander’s tables is outdated, thereby indicating that sample sizes specified in the CFHPR were/are too low. With respect to the Iceland imports, where the CFHPR definition of lot was not adhered to, one wonders if the number of samples were sufficient.
The CFHPR mandates that samples sizes are calculated assuming five percent of the fish are carriers. The true prevalence of ISAV in wild and cultured fish populations is unknown, however in wild fish and healthy cultured fish the prevalence is likely to be lower than five percent. There is little published data on the prevalence of ISAV in asymptomatic fish at the farm level, however this data no doubt exists and should be used to generate a more realistic appraisal of prevalence. In Maine the prevalence of ISAV was 1.3 percent in cultured Atlantic salmon sampled from a region thought to be lightly infected (Gustafson et al., 2008). In wild fish, distant from aquaculture facilities, the prevalence is likely to be lower than occurs on farms. In wild Scottish sea (brown) trout (Salmo trutta), the prevalence of ISAV was only 2.5 percent, when tested by cell culture. This data suggests that the five percent assumption is unrealistically low, leading again to insufficient sample size. Using Ossiander’s table the appropriate sample size at the one percent level would be approximately 296 instead of the 60 (without correction for sensitivity) in a fish population over 100,000.
Finally it should be pointed out that farms have advance warning of their test dates, and it is well known amongst Fish Health Officials that it is rare to find moribund fish when they arrive to sample. This means the probability of detecting a pathogen is even further diminished since the most sensitive samples (moribund fish) are excluded from the sample. Eliminating prior notification would help increase the sensitivity of ISAV testing.
(3) Iodine Disinfection of Salmonid Eggs
The CFHPR and the Atlantic salmon Import Policy required that all Atlantic salmon eyed eggs imported into BC were/are surface disinfected with an iodine-containing solution (100 ppm active iodine for 10 minutes) just prior to shipment. It is generally felt that iodine disinfection is highly efficacious at killing egg-surface associated virus, however it is surprising how little research has been done to verify this assumption.
Iodine disinfection is applied only to the outside of the egg, and the iodine does not penetrate into the egg in sufficient quantity to kill pathogens within. This is a concern because some piscine pathogens including the bacteria Renibacterum salmoninarum (causative agent of bacterial kidney disease (BKD)) and Flavobacterium psychrophilum (causative agent of coldwater disease) are known to be vertically transmitted inside the salmonid egg (Brown et al., 1997; Evelyn et al., 1984). Strong circumstantial evidence for the vertical transmission of ISAV comes from Chile. Salmonids are exotic to Chile, however live salmon were introduced into the wild in Chile in 1921 (Montero et al., 2006). The importation of salmonid eggs for aquaculture began around 1985 and the Chilean aquaculture industry greatly expanded from 1996 on (Montero et al., 2006). It is likely that earlier egg importations were not surface disinfected, however more recent importations likely were. Eggs were imported from North America or Europe. ISAV was isolated in Chile for the first time in farmed moribund coho (Oncorhnychus kisutch) in 2001 (Kibenge et al., 2001), and in farmed Atlantic salmon in 2008 (Godoy et al., 2008). Since ISAV’s first detection, ISAV has decimated farmed salmon populations and has led to a dramatic collapse of a large number of Chilean aquaculture facilities (Asche et al., 2009). The fact that these isolates originated from the northern hemisphere, suggests but does not prove vertical transmission took place.
Originally iodine egg disinfection was adopted by aquaculture in the 1970’s to kill pathogenic bacteria on the egg’s surface (Tuttle-Lau et al., 2010), particularly to prevent salmonid diseases such as furunculosis (Aeromonas salmonicida) and enteric redmouth disease (Yersinia ruckeri). At the time iodine disinfection was developed, little was known about viral diseases since viral detection methods were in their infancy. Over time iodine egg disinfection was assumed, but not proven, to be equally effective against viruses. Little attention was however given to research data that demonstrated otherwise, both for bacteria and viruses. Though iodine disinfection has greatly reduced the number of outbreaks of egg-surface associated bacterial diseases, it fails to kill all live bacteria present. Steelhead (Oncorhynchus mykiss) eggs were artificially coated with a piscine pathogenic bacterium known as Flavobacterium psychrophilium, and thereafter disinfected in 100 ppm iodine for 30 minutes (20 minutes longer than the CFHPR require). While the kill rate was high (98%), two percent of the bacteria survived (Brown et al., 1997). This information shows that for bacteria, the iodine disinfection is incomplete. In the case of viruses the evidence on iodophors efficacy is similarly scant, but does indicate that iodine disinfection against piscine viruses is also incomplete. In one study ovarian fluid from CFHPR-certified IHNV- rainbow trout green (freshly spawned eggs) and eyed eggs was artificially loaded with 106 PFU/mL IHNV (equivalent to a moderate to high IHNV titer (load) as seen in feral sockeye (Mulcahy et al., 1983)), the green eggs (n=300, four replicates per treatment for each of green and eyed eggs [normally thousands of eggs are disinfected at a time]) were then fertilized, and both green and eyed eggs were disinfected using the CFHPR protocol of iodine disinfection using 100 ppm iodine for 10 minutes (Goldes et al., 1995). After disinfection, eggs were rinsed in pathogen-free water and finally placed in a suspension of gently stirred epithelioma papulosum cyprini (EPC) cells for 10 minutes. It was theorized that live egg-associated virus would adhere to and infect the EPC cells. The suspended EPC cells were then placed into tissue culture plates and visually assessed for IHNV-mediated CPE. Iodine disinfection markedly (99.98%) reduced the number of live virions on the surface both green and eyed eggs, however it did not eliminate all live virus on the the surface of the eggs. In fact live IHNV was cultured in 75% of the treatment replicates in both green and eyed eggs. This data suggests that even when eggs were disinfected under the best of laboratory conditions, it fails to eradicate IHNV on the egg surface. While iodine disinfection has not been shown to be complete under laboratory conditions, the protocol is likely to be much less effective under farm conditions. Freshly spawned eggs (green eggs) become contaminated with excess sperm, blood, bile and feces from the parents when fish are manually spawned in aquaculture. This material may carry viruses such as ISA. In addition freshly spawned eggs have a 10 μm deep adhesive organic layer over the surface (Flugel, 1964). These organic materials may harbor virus and conceal its presence such that iodine cannot access and kill it. Organic matter also inhibits the disinfecting ability of iodine. On addition of 1% calf serum (organic material used in tissue culture media) to an aqueous solution of the commercial iodophor Betadine (iodine releasing disinfectant), the available iodine concentration dropped 62 percent, from 50 to approximately 19 ppm iodine (Elliott et al., 1978). Consequently the efficacy of iodine disinfection of green eggs is likely to be less complete than with eyed eggs (which are much cleaner). Another practical problem with iodine egg disinfection is that thousands of eggs are disinfected at a time. When iodine levels were tested at the bottom of the egg mass being disinfected under hatchery conditions, it was found that iodine levels dropped 70% (from 105 to 30 ppm) (Chapman et al., 1992). Consequently as practiced, the efficacy iodine disinfection likely varies greatly within each group of eggs disinfected. In summary this data indicates that iodine egg disinfection as specified under the CFHPR likely does not prevent the ‘vertical’ transmission of ISAV on the exterior of the egg, and given the limitations of iodine disinfection in practice the efficacy of iodine disinfection is questionable. It is also important to remember that iodine disinfection does not kill ISAV present inside the egg, and it is unknown whether ISAV is in this location. Given that some piscine pathogens are transmitted inside the egg, it should be conservatively assumed until otherwise proven that this is the case for ISAV.
Conclusions
Every precaution must be taken to prevent the introduction of ISA in BC’s ecosystems. While research studies have shown little evidence for morbidity or mortality in pacific salmonids and other non-salmonids (McClure et al., 2004; Nylund et al., 1997; Rolland et al., 2003; Snow et al., 2002), this may not be the case in BC where native fish are immunologically naïve to ISAV and given current stressful environmental conditions (pollution, habitat destruction etc.). Stress plays a key role in causing disease. BC’s fish populations are in danger and adding one more stressor (ISAV) may make a difference in the survival of endangered aquatic species and sub-populations. The data presented herein (variable sensitivity of CHSE214 cells, inadequate sample sizes, ineffectiveness of iodine disinfection etc.) suggests that the current CFHPR do not provide a high level of regulatory security against the introduction of ISAV into British Columbia.
Figure 1.
Figure 1. Pathogens of concern listed in the CFHPR (http://www.dfo-mpo.gc.ca/science/enviro/aah-saa/regulation-reglements-eng.htm#xii)
Table 1.
Table 1. CFHPR specifications for sample size determination. Sample size required to detect one or more infected specimens in populations (lots) with an assumed minimum prevalence of detectable infection of 5 and 10%. Calculations are based on a 96 percent level of confidence (http://www.dfo-mpo.gc.ca/science/enviro/aah-saa/regulation-reglements-eng.htm#xii)
Literature Cited
Asche, F., Hansen, H., Rangnar, T., and Tveteras, S. (2009). The salmon disease crisis in Chile. Marine Resource Economics 24, 405-411.
Bouchard, D., Keleher, W., Opitz, H. M., Blake, S., Edwards, K. C., and Nicholson, B. L. (1999). Isolation of infectious salmon anemia virus (ISAV) from Atlantic salmon in New Brunswick, Canada. Dis Aquat Organ 35(2), 131-7.
Bouchard, D. A., Brockway, K., Giray, C., Keleher, W., and Merrill, P. L. (2001). First report of infectious salmon anemia (ISA) in the United States. Bulletin of the European Association of Fish Pathologists 21(2), 86-88.
Brown, L. L., Cox, W. T., and Levine, R. P. (1997). Evidence that the causal agent of bacterial coldwater disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Diseases of Aquatic Organisms 29, 213-218.
Chapman, P. F., and Rogers, R. W. (1992). Decline in iodine concentration of iodophor during water hardening of salmonid eggs and methods to reduce this effect. Progressive Fish-Culturist 54, 81-87.
Dannevig, B. H., Falk, K., and Namork, E. (1995a). Isolation of the causal virus of infectious salmon anaemia (ISA) in a long-term cell line from Atlantic salmon head kidney. J Gen Virol 76 ( Pt 6), 1353-9.
Dannevig, B. H., Falk, K., and Press, C. M. (1995b). Propagation of infectious salmon anaemia (ISA) virus in cell culture. Vet Res 26(5-6), 438-42.
Devold, M., Krossoy, B., Aspehaug, V., and Nylund, A. (2000). Use of RT-PCR for diagnosis of infectious salmon anaemia virus (ISAV) in carrier sea trout Salmo trutta after experimental infection. Dis Aquat Organ 40(1), 9-18.
Elliott, D. G., and Amend, D. F. (1978). Efficacy of certain disinfectants against infectious pancreatic necrosis virus. Journal of Fish Biology 12, 277-286.
Evelyn, T. P. T., Ketcheson, J. E., and Prosperi-Porta, L. (1984). Further evidence for the presence of renibacterium salmoninarum in salmonid eggs and for the failure of povidone-iodine to reduce the intra-ovum infection rate in water-hardened eggs. Journal of Fish Diseases 7, 173-182.
Falk, K., Namork, E., and Dannevig, B. H. (1998). Characterization and applications of a monoclonal antibody against infectious salmon anaemia virus. Dis Aquat Organ 34(2), 77-85.
Flugel, H. (1964). Electron microscopic investigations on the fine structure of the follicular cells and the zona radiata of trout oocytes during and after ovulation. Die Naturwissenschaften 51(23), 564-565.
Godoy, M. G., Aedo, A., Kibenge, M. J., Groman, D. B., Yason, C. V., Grothusen, H., Lisperguer, A., Calbucura, M., Avendano, F., Imilan, M., Jarpa, M., and Kibenge, F. S. (2008). First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile. BMC Vet Res 4, 28.
Goldes, S. A., and Mead, S. L. (1995). Efficacy of iodophor disinfection against egg surface-associated infectious hematopoietic necrosis virus. The Progressive Fish-Culturist 57, 26-29.
Gustafson, D. L. (1997). Ecological association of Tubifex tubifex in Montana waters. In "1997 Whirling Disease Symposium: Expanding the database: 1996 research progress reports", pp. 47-51. Whirling Disease Foundation, Bozeman, Montana.
Gustafson, L., Ellis, S., Bouchard, D., Robinson, T., Marenghi, F., Warg, J., and Giray, C. (2008). Estimating diagnostic test accuracy for infectious salmon anaemia virus in Maine, USA. J Fish Dis 31(2), 117-25.
Humphry, R. W., Cameron, A., and Gunn, G. J. (2004). A practical approach to calculate sample size for herd prevalence surveys. Preventive Veterinary Medicine 65, 173-188.
Kibenge, F. S., Garate, O. N., Johnson, G., Arriagada, R., Kibenge, M. J., and Wadowska, D. (2001). Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile. Dis Aquat Organ 45(1), 9-18.
Kibenge, F. S., Lyaku, J. R., Rainnie, D., and Hammell, K. L. (2000). Growth of infectious salmon anaemia virus in CHSE-214 cells and evidence for phenotypic differences between virus strains. J Gen Virol 81(Pt 1), 143-50.
McClure, C. A., Hammell, K. L., Dohoo, I. R., and Gagne, N. (2004). Lack of evidence of infectious salmon anemia virus in pollock Pollachius virens cohabitating with infected farmed Atlantic salmon Salmo salar. Dis Aquat Organ 61(1-2), 149-52.
McClure, C. A., Hammell, K. L., Stryhn, H., Dohoo, I. R., and Hawkins, L. J. (2005). Application of surveillance data in evaluation of diagnostic tests for infectious salmon anemia. Dis Aquat Organ 63(2-3), 119-27.
Merrill, P. L. (2003). International response to Infectious Salmon Anemia: prevention, control and eradication, New Orleans, LA, USA.
Mjaaland, S., Hungnes, O., Teig, A., Dannevig, B. H., Thorud, K., and Rimstad, E. (2002). Polymorphism in the infectious salmon anemia virus hemagglutinin gene: importance and possible implications for evolution and ecology of infectious salmon anemia disease. Virology 304(2), 379-91.
Mjaaland, S., Rimstad, E., Falk, K., and Dannevig, B. H. (1997). Genomic characterization of the virus causing infectious salmon anemia in Atlantic salmon (Salmo salar L.): an orthomyxo-like virus in a teleost. J Virol 71(10), 7681-6.
Montero, C., Konde, V., and Farinelli, F. (2006). A case study of salmon industry in Chile. In "Transfer technology for successful integration into the Global Economy" (J. Zhan, Ed.), Vol. UNCTAD/ITE/IIT/2005/12. United Nations conference on trade and development, Geneva.
Mulcahy, D., Pascho, R. J., and Jenes, C. K. (1983). Titre distribution patterns of infectious hematopoietic necrosis virus in ovarian fluids of hatchery and feral salmon populations. Journal of Fish Diseases 6, 183-188.
Mullins, J. E., Growman, D., and Wadowska, D. (1998). Infectious salmon anaemia in salt water Atlantic salmon (Salmo salar) in New Brunswick, Canada. Bulletin of the European Association of Fish Pathologists 18(4), 110.
Munir, K., and Kibenge, F. S. (2004). Detection of infectious salmon anaemia virus by real-time RT-PCR. J Virol Methods 117(1), 37-47.
Nerette, P., Dohoo, I., Hammell, L., Gagne, N., Barbash, P., Maclean, S., and Yason, C. (2005). Estimation of the repeatability and reproducibility of three diagnostic tests for infectious salmon anaemia virus. J Fish Dis 28(2), 101-10.
Nicholson, B. L., and Byrne, C. (1973). An established cell line from the Atlantic salmon (Salmo salar). Journal of the Fisheries Research Board of Canada 30, 913-916.
Nylund, A., Kvenseth, A. M., Kroosoy, B., and Hodneland, K. (1997). Replication of the infectious salmon anaemia virus (ISAV) in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 20, 275-279.
Ossiander, F. J., and Wedemeyer, G. (1973). Computer program for sample sizes required to determine disease incidence in fish populations. Journal of the Fisheries Research Board of Canada 30(9), 1383-1384.
Plarre, H., Devold, M., Snow, M., and Nylund, A. (2005). Prevalence of infectious salmon anaemia virus (ISAV) in wild salmonids in western Norway. Dis Aquat Organ 66(1), 71-9.
Rodger, H. D., Turnbull, T., Muir, F., Millar, S., and Richards, R. H. (1998). Infectious salmon anemia (ISA) in the United Kingdom. Bulletin of the European Association of Fish Pathologists 18(4), 115-116.
Rolland, J. B., Bouchard, D., Coll, J., and Winton, J. R. (2005). Combined use of the ASK and SHK-1 cell lines to enhance the detection of infectious salmon anemia virus. J Vet Diagn Invest 17(2), 151-7.
Rolland, J. B., and Winton, J. R. (2003). Relative resistance of Pacific salmon to infectious salmon anaemia virus. J Fish Dis 26(9), 511-20.
Snow, M., Raynard, R., Bruno, D. W., van Nieuwstadt, A. P., Olesen, N. J., Lovold, T., and Wallace, C. (2002). Investigation into the susceptibility of saithe Pollachius virens to infectious salmon anaemia virus (ISAV) and their potential role as a vector for viral transmission. Dis Aquat Organ 50(1), 13-8.
Tuttle-Lau, M. T., Phillips, K. A., and Gaikowski, M. P. (2010). Evaluation of the efficacy of iodophor disinfection of walleye and northern pike eggs to eliminate viral hemorrhagic septicemia virus. In "Fact Sheet", Vol. US Department of the Interior/US Geological Survey Fact Sheet: 2009-3107.
Wergeland, H. I., and Jakobsen, R. A. (2001). A salmonid cell line (TO) for production of infectious salmon anaemia virus (ISAV). Dis Aquat Organ 44(3), 183-90.
dcreid@islandnet.com
www.dcreid.ca
www.creatorsac.blogspot.com
www.fishfarmnews.blogspot.com
www.catchsalmonbc.com
KEY DOCUMENTS - OIE ISA Testing Manual, Cohen Commission Hearings, Dec 15, 16, 19, 2011 - Updated Dec 30, 2011
This manual walks you through all the tests that are used to indicate and then prove the presence of ISA virus. For those without a biological sciences background, the jargon will be tough sledding. The most important table is: Table 5.1 - Methods for targeted surveillance and diagnosis of ISA. Go here first.
The definition of a suspect case, for practical purposes of reporting the disease is Section 7.1.: Definition of suspect case. The definition of a confirmed case, is provided in Section 7.2.: Definition of confirmed case. Go here second.
There are several key, referenced scientific papers that support the OIE ISA Testing Manual: 1, 14 and 26 for starters.
Read the OIE Manual in conjunction with this previous post on ISA testing: http://fishfarmnews.blogspot.com/2011/12/isa-testing-for-salmon.html.
This manual is key reading to understand Cohen Commission testimony, Dec 15, 16 and 19, 2011.
Dec 15 transcripts are here: http://www.cohencommission.ca/en/Schedule/Transcripts/CohenCommission-HearingTranscript-2011-12-15.pdf#zoom=100.
Dec 16 transcripts are here: http://www.cohencommission.ca/en/Schedule/Transcripts/CohenCommission-HearingTranscript-2011-12-16.pdf#zoom=100.
Dec 19 transcripts are here: http://cohencommission.ca/en/Schedule/Transcripts/CohenCommission-HearingTranscript-2011-12-19.pdf#zoom=100.
Dec 15, 16, 19 Exhibits are here: http://www.cohencommission.ca/en/Schedule/.
Friday, 9 December 2011
KEY DOCUMENTS - Organic Seafood Does Not Include Farmed Atlantic Salmon, Updated Feb 3, 2012
This link will take you to the Pew Environment Group where you can see its thinking on products that are labelled organic but the consumer might not be getting something that is organic: http://www.pewenvironment.org/news-room/media-coverage/environmental-claims-for-farmed-fish-dont-hold-up-to-scrutiny-85899367273.
The Pew site gives your links to two well-known organic rating organizations.
For the Monterey Bay Aquarium's Sea Food Watch guide go here: http://www.montereybayaquarium.org/cr/SeafoodWatch/web/sfw_regional.aspx. It says to avoid farmed Atlantic salmon. Please note: Seafood Watch will test the credibility of MSC, GAA, Global GAP and Global Trust wild and farmed eco-certification programs in 2012: http://www.montereybayaquarium.org/cr/seafoodwatch.aspx.
For the Blue Ocean Institute's sea food guide go here: http://www.blueocean.org/seafood/seafood-search-result?keyword=Salmon. Scroll down until you find the red listed Atlantic salmon icon and read the text. The listing means: avoid buying farmed Atlantic salmon.
I have already pointed out that Greenpeace has an annual document that rates environmentally unfriendly products - which includes farmed Atlantic salmon - and moves the 8 biggest North American retailers, for example, Safeway, and their consumers away from farmed Atlantic salmon. Here is one Greenpeace document that red lists farmed Atlantic salmon: http://www.greenpeace.org/international/PageFiles/173748/Oceans_Advocates.pdf. The listing means: avoid buying farmed Atlantic salmon.
The Environmental Defense USA has also put out a fish consumption guide. See: http://apps.edf.org/page.cfm?tagID=17694. It says to avoid farmed Atlantic salmon.
Sea Choice at, http://seachoice.org/files/pdf/SC_card_2011_web.pdf, has banded together with seven other conservation organizations that state that farmed salmon should not be bought because it is environmentally damaging. This is a collaboration of eight North American ocean conservation organizations, including:
Blue Ocean Institute (Cold Spring, Harbor, N.Y.); David Suzuki Foundation (Vancouver,British Columbia); FishWise (Santa Cruz, Calif.); Monterey Bay Aquarium’s Seafood Watch (Monterey, Calif.); New England Aquarium (Boston); Vancouver Aquarium’s Ocean Wise (Canada); SeaChoice (Canada); Shedd Aquarium (Chicago).
SEAFOOD WATCH will test “credibility” of MSC, GAA, Global GAP & Global Trust wild & farmed eco-certs
Saturday, 3 December 2011
ISA Testing for Salmon - Dec 3, 2011 - Updated Dec 8, 2011
On the other hand, the Fred Kibenge lab and the Are Nyland lab testing comes with a written statement about the tests performed and also the data table for all fish tissue tested. And the comments made are illuminating. For example, on the sockeye fry from Rivers Inlet, Nyland says that the samples were degraded (as they were not collected for ISA testing reasons) but that the one positive result, lead him to say that he thinks it likely that ISA is in BC. DFO says no, but produces no data.
There have been seven Pacific salmon tested positive for ISA this fall by Kibenge and Nylund. DFO says the results from these experts are false positives. They also claim that the 2002-2003 paper by Molly Kibenge et al of more than 100 salmon along the BC and Alaska coast are also all false positives. DFO has produced no data to support its false positive assertion.
The same can be said of the Province's testing. A summary table of results indicates that 4726 farmed salmon all tested negative for ISA and these results are on the Cohen Commission record. But data tables on the individual testings have not been produced. Providing the actual data would help restore confidence in the system.
Until DFO, CFIA and BC produce their data tables then one has to go with the expert labs information. I have referenced the expert testing tables in a previous post: http://fishfarmnews.blogspot.com/2011/11/key-bc-news-isa-disease-in-bc-nov-28.html. Please read them and draw your own conclusions.
This link takes you to a good summary piece on the tests for ISA: http://www.dfo-mpo.gc.ca/media/back-fiche/2011/20111108-eng.htm.
This link gives you access to more on ISA testing, including the PCR test: http://www.dfo-mpo.gc.ca/media/back-fiche/2011/20111202-eng.htm.
Alexandra Morton has done a good summary post on ISA and testing in BC to date - Dec 8, 2011. I suggest you read it: http://alexandramorton.typepad.com/.
Monday, 28 November 2011
KEY BC NEWS - ISA Disease in BC, Nov 30, 2011
There was very sad news this morning, Nov 30, 2011. Research conducted by DFO and other scientists, throughout BC, Alaska and the Bering Sea showed that ISA has been in BC and Alaska salmon since 2002.
See this:http://www.superheroes4salmon.org/sites/default/files/files/DFO%20draft%20mamuscript_2004%281%29.pdf.
*
Now seven wild salmon have tested positive for ISA in BC
ISA is not a Pacific Ocean disease. The only plausible source is imports of eggs/embryos of Atlantic salmon to BC fish farms. BC will have a serious problem with its 10 species of salmon and salmonids, depending on the RNA sequencing. Fish farms need to be out of the ocean.
Sockeye Fry, Rivers Inlet. The first two salmon identified were sockeye fry from Rivers Inlet. The Fred Kibenge lab in PEI did the PCR testing and found 2 of 48 fry positive for ISA. Are Nylund from Norway retested these, and one of 32 reruns gave a positive ISA result. His comments were that the samples were degraded (as they were not collected specifically for ISA testing) but "... do suggest ... that an ISA virus is present in wild populations of O. nerka (Pacific sockeye)." The Seattle Times.
See Fred Kibenge, world expert on ISA, in his lab: http://www.upei.ca/avc/oie.
See the Kibenge table: http://www.wildsalmonfirst.org/sites/default/files/files/OIE%20report%20by%20Kibenge%281%29.pdf.
See the Nylund Nov 2, 2011 table: http://alexandramorton.typepad.com/Report%20021111.pdf.
Coho, Chum and Chinook Adults, Fraser River. The next three salmon identified were adult salmon of three species. Kibenge tested 10 adult salmon of three species from the Fraser River. He found ISA in coho, chum and chinook salmon.
See the Kibenge Table: http://alexandramorton.typepad.com/Alexandra%20Morton%20Samples%20%28SOCKEYE%20CHINOOK%20and%20COHO%29_VT10142001_OCTOBER20%202011.pdf
Sockeye Adults, Fraser River. The following two salmon bring the total to seven wild BC salmon testing positive for ISA.
See the Nylund table, Nov: http://alexandramorton.typepad.com/Report231111%5B13%5D.pdf.
Are Nylund, head of the Fish Diseases Group at the University of Bergen, Norway, has stated: “… based on 20 years of experience, I can guarantee that if British Columbia continues to import salmon eggs from the eastern Atlantic infectious salmon diseases, such as ISA, will arrive in Western Canada”. Dr. Laura Richards, DFO, let the eggs/embryos into BC.
Monday, 21 November 2011
KEY DOCUMENTS - High Levels of PCBs, POPs and other Chemicals in Farmed Fish - Updated April 25, 2012
This is the 2004 Science article: http://www.albany.edu/ihe/salmonstudy/salmon_study.pdf.
This is a following, 2006, study on chemicals in farmed and wild fish: http://www.puresalmon.org/pdfs/Huang_et_al_Environmental_Research.pdf. The title is: 'Consumption advisories for salmon based on risk of cancer and non-cancer health effects'. The chemicals found in farmed fish include: PCBs, dioxins/furans and chlorinated pesticides. PCBs and other chemical families can have more than 100 different metabolites and affect multiple locations in the body.
"We found that contaminant levels were about an order of magnitude higher in farmed and market samples than in wild Pacific salmon." The study has a good discussion of the different advisory guidelines and that farmed and wild salmon contain other organic chemicals for which there are non-cancer advisories. See Table 2: Non-cancer effects of chlorinated pesticides, PCBs, and dioxins.
The study found that farmed fish from northern Europe should be eaten only once in five months based on USEPA guidelines. North and South America farmed fish should ONLY be eaten 0.4 to 1 per month.
In comparison, and adding all the chemicals together, wild salmon should be eaten between 1 and 5 times per month. But with only one chemical, the rate could be as high as eating wild salmon 47 times per month. That stat says it all. Eat wild salmon.
Another quote: 'While dioxin-like activity is found in almost all animal food products that contain fat, the levels in the farmed and market salmon that we have analyzed are higher than those in almost all other foods.'
See this 2005 article: http://www.ncbi.nlm.nih.gov/pubmed/15866762. 'Risk-based consumption advice for farmed Atlantic and wild Pacific salmon contaminated with dioxins and dioxin-like compounds.'
See this 2008 study: http://www.ncbi.nlm.nih.gov/pubmed/18313722. 'Polybrominated diphenyl ethers (PBDEs) in farmed and wild salmon marketed in the Northeastern United States.'
See this 2009 study: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697370/. 'A Simplified Method to Distinguish Farmed (Salmo salar) from Wild Salmon: Fatty Acid Ratios Versus Astaxanthin Chiral Isomers.' Farmed salmon is often mis-labelled as to source and salmon species, for ex. marketed as wild chinook.
See this 2005 link:http://pubs.acs.org/doi/abs/10.1021/es050898y 'Lipid Composition and Contaminants in Farmed and Wild Salmon.' The current diet of western world people is already excessive in consumption of Omega 6s and a full complement of Omega 3s can be obtained from vegetable oils and meats.
FYI, the lipid level in fatty fish accounts for the greater concentrations of organic chemicals, as well as Omega 3ths and 6s. Farmed salmon are higher in body fats because of their feed and so they are higher in organic pollution.
Kris-Etherton et al. (37), speaking for the American Heart Association, states, “The fish recommendation must be balanced with concerns about environmental pollutants, in particularPCBandmethylmercury, described in state and federal advisories.”
See this, 2011, link for a Swedish study that finds European, including Norwegian, farmed fish have organic chemicals 61 times above the legal limit: http://wap.nrk.no/m/artikkel.jsp?art_id=17882460. See Google to translate, but here is a reference: Conservation Association writes on its website , it found the content of pollutants in salmon that is 61 times higher than the EU's proposed limit.
See this link for ten pages of short abstracts on polluting chemical agents in farmed salmon: http://scholar.google.ca/scholar?q=Lipid+Composition+and+Contaminants+in+Farmed+and+Wild+Salmon&hl=en&as_sdt=0&as_vis=1&oi=scholart
See this link for a 2012 article on drugs in [chicken-based] feather meal, commonly used in fish farm feed, that results in bacteria, including e-coli, that are resistant to the antibiotics we use to treat humans for disease: http://pubs.acs.org/doi/abs/10.1021/es203970e?journalCode=esthag.In 12 feather meal samples, which were collected from six states and China, they found 59 pharmaceuticals and personal care products. Each sample was found to contain antibiotic residues (testing positive for between 2 and 10 different drugs).
Keeve Nachman, at Johns Hopkins Center for a Livable Future, said they were shocked at the variety of pharmaceuticals they were able to detect.
Tuesday, 15 November 2011
ISA Breaks Out In Chile Again, Nov 3 - Updated Dec 2, 2011
See: http://www.fis.com/fis/worldnews/worldnews.asp?monthyear=&day=3&id=47307&l=e&special=&ndb=1%20target=
In BC, we have five positive ISA results in wild salmon of four of five species. The typical infection cycle starts as much as 10 years before a major infection breaks out. And ISA and other aquaculture diseases are cyclical over time.
The Association of Chilean Salmon Industry AG, which is the Chilean salmon farmers association, explained in a statement: "While this is the first case of the year 2011, we know that the ISA virus is not possible to eradicate so we must live with it and there will be new events in the future."
This suggests an eery possibility once DFO accepts that ISA is here. If I were refining a fish farm communications strategy, I would ask for protection from wild salmon on the grounds that ISA never goes away - and testing has shown 4,726 times that fish farms don't have ISA. Then I would explain that we have to learn to live with ISA because it can't be eradicated.
***
Fish Farm Spin Cycle - Chile
Read the thread in this Chilean news on ISA: http://www.fis.com/fis/worldnews/worldnews.asp?monthyear=&day=2&id=48163&l=e&special=&ndb=1%20target.
You will find, when you read this article and follow the links below it, that the fish farm denied there was a problem, gave assurances that it was following the law, and in fact, surpassing them, then being caught failing to report a new ISA cycle. The next stage will be it saying it is introducing all the measures required and will be better and so on. This is a very common pattern with fish farms. In BC Marine Harvest has just plead guilty to several charges and thus making the story go away, though it had been protesting its innocence for two years. And Cooke Aquaculture on the east coast, saying for two years it was innocent of using an illegal drug, Cypermethrin, then once charges were brought is going to pay them. And so on.
Fish Farm Diseases Pass Genes to Human Diseases, Nov 24, 2011
However, you should know that in Chile scientists have just shown that fish farm bacteria can pass drug resistance genes to mammalian bacteria - dogs then humans. See this link: http://www.ncbi.nlm.nih.gov/pubmed/21526325.
This results from overuse of antimicrobial chemicals to prevent Atlantic salmon from getting diseases. Genes for chemical resistance - for example, to tetracyclines, pass between pathogens and thus to humans, making the antibiotics we use useless.
Also, farmed salmon were shown to retain residual levels of drugs, and this could negatively affect common broad spectrum antibiotics used in humans who eat the fish - ones for salmonella for instance. Much of Chilean farmed salmon is sold in the USA. See: Rev Med Chil. 2011 Jan;139(1):107-18. Epub 2011 Apr 11.
You may want to refrain from eating farmed salmon. As the illegal cypermethrin - for killing sea lice, a different kind of chemical - was apparently used for years by Cooke Aquaculture in Nova Scotia - court case pending, this means farmed salmon from more than one country may have chemicals you may not want to eat.
Also: http://www.ncbi.nlm.nih.gov/pubmed/15478304. See: Rev Med Chil. 2004 Aug;132(8):1001-6.
One abstract says: "The passage of antibiotic resistance genes from aquatic bacteria to human and animal pathogens has been demonstrated, indicating that industrial use of antibiotics in aquaculture affects negatively the antibiotic therapy of human and animal bacterial infections."
See: http://www.ncbi.nlm.nih.gov/pubmed/19538451, for a 2010 paper on this subject.
See: http://www.ncbi.nlm.nih.gov/pubmed/13678822, for a 2003 paper on this subject.
See: http://www.fis.com/fis/worldnews/worldnews.asp?l=e&country=0&special=aquaculture&monthyear=&day=&id=47798&ndb=1&df=0. For a 2011 paper. "Researchers from Tufts University School of Medicine agree on the controversial, non-therapeutic use of antibiotics in food animals and fish farming as a cause of antibiotic resistance." The report's main conclusions can be found in the linked article.
Thursday, 10 November 2011
MINISTER Ashfield Denies BC ISA - Nov 9, 2011 - Updated Nov, 17, 2011
Here are some comments on the release:
1. Most importantly the news release denies there is ISA in BC, and fails to recognize all the evidence, or put the information fairly.
2. Ashfield does not establish an armslength multinational lab on the west coast to test wild salmon for ISA with our American friends. The Cohen testimony suggests conflicts of interest - staff and resources - in DFO, other government, industry and academics. It is important that the multinational lab be public and free to report without interference from DFO and so on.
3. The release should have said that the sockeye samples were degraded and that the Moncton lab did not confirm ISA in them. That is all that could be reported.
4. Getting the Moncton lab to test the fry is not 'confirmation'. The Kibenge lab is the world designated expert in ISA. One does not reconfirm the best. That's just spin.
5. Dr. Are Nylund at the University of Bergen, Norway, also found ISA in one of the sockeye fry. His notes also say that it is likely that ISA is in the North Pacific.
6. Ashfield continually uses the phrase: fishing industry. Fish farms are not the fishing industry. That phrase would be the commercial, recreational and processing sector. The fishing industries are four times larger than fish farms.
7. Ashfield fails to mention that ISA has been confirmed by Kibenge in coho, chinook and chum from the Fraser River. A previous communication suggested the possibilitiy that the collection of those samples could have resulted in cross contamination. That is a fair comment; however, it is also fair comment to note that a fish with ISA would infect the Fraser River itself. Note: in case the reader does not know this, ISA is an Atlantic Ocean virus, it is not in the Pacific and plausibly only got here in imported egg/embryos from the Atlantic. This is the coho/chum/chinook table: http://alexandramorton.typepad.com/Alexandra%20Morton%20Samples%20%28SOCKEYE%20CHINOOK%20and%20COHO%29_VT10142001_OCTOBER20%202011.pdf
8. That the Kibenge lab can confirm ISA in five salmon of four of the five species of Pacific salmon in short order, suggests there is an issue with the provincial system that tested 4,726 farmed salmon, with 1,100 symptoms of ISA, but zero ISA reported. Either the test or the reporting arrangement. This needs to be checked.
9. Google: ISA in coho in Chile. The first article, by Kibenge, 2001, http://www.ncbi.nlm.nih.gov/pubmed/11411649, shows how deadly it can be for coho, even when Atlantic salmon are not affected.
10. In a different communication, Dr. Laura Richards has confirmed that Dr. Kristi Miller has been given the money to test farmed and wild fish with her genomic signature research. Good thing.
Tuesday, 8 November 2011
ISA - Current Press - Updated Dec 3, 2011
On November 9th the CFIA announced that their test “found no sign of infectious salmon anemia” but that “these supplementary results must be considered inconclusive because of the poor quality of the samples.” Peter Wright, manager of the Fisheries and Oceans lab in Moncton where the test was conducted then went on to say: “…we call things inconclusive – because the degradation is so bad you cannot form an opinion from a test standpoint as to whether or not you are capable or not capable. The fact that they come up negative doesn’t really mean anything because they are so badly degraded.”
2. See this link for November 8 news stories on ISA in Pacific Salmon in BC:
http://news.google.com/news/story?ncl=http://www.theglobeandmail.com/news/national/british-columbia/salmon-hearing-participants-clash-openly-in-final-submissions/article2228742/&hl=en&geo=us